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Abstract--This paper presents an analytical solution for heating a rectangular sensible heat storage packed 
bed with a constant temperature at the walls by a non-thermal equilibrium flow of incompressible fluid. A 
two energy equation model is employed to simulate the temperature difference between the fluid and solid 
phases. Using the perturbation technique, an analytical solution for the problem is obtained. It is shown 
that the temperature difference between the fluid and solid phases consists of the steady and transient 
components. The steady component is localized near the inlet boundary. The transient component describes 
a wave propagating from the fluid inlet boundary. The amplitude of the wave quickly decreases while the 

wave propagates downstream. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

Packed beds are often used for the storage of heat 
energy and in the chemical industry. These important 
applications explain the permanent interest in the 
transport phenomena in packed beds for analytical 
and numerical investigations. Most of the analytical 
studies of the phenomena which utilize the non-ther- 
mal equilibrium approach were concentrated on the 
Schumann model of a packed bed suggested in ref. 
[1]. This model igrLores the thermal conduction terms 
in both the fluid and solid phase energy equations. 
Analytical solutions for this model for various bound- 
ary conditions are obtained in refs. [2-7]. 

Numerical solutions for the non-thermal equi- 
librium model, which utilize the full energy equations 
for the fluid and solid phases, have been recently pre- 
sented in refs. [8-1 1]. In these references a non-ther- 
mal equilibrium, forced fluid flow through a rec- 
tangular packed bed is considered. Two types of 
boundary conditions at the packed bed walls are con- 
sidered : (a) a constant temperature boundary con- 
dition and (b) an insulated boundary condition. Pro- 
ceeding from the results of comprehensive numerical 
calculations, ref. [10] shows that the 1-D formulation 
is sufficient in the case of an insulated boundary con- 
dition, while the 2..D formulation is necessary for the 
case of a constant wall temperature boundary 
condition. 

In the present paper we present an analytical solu- 
tion for the problem with the constant wall tem- 
perature boundary condition. In obtaining this solu- 
tion the perturbation analysis suggested in ref. [12] is 
utilized. The price for obtaining the analytical solution 
is assuming, in addition to the assumptions made in 

refs. [8-11], that the fluid is incompressible, the flow 
rate at every cross section of the packed bed is constant 
and uniform, and properties of the fluid and solid 
phases are constant. 

PHYSICAL MODEL AND GOVERNING 
EQUATIONS 

Figure 1 depicts the schematic diagram of the prob- 
lem under consideration. A 2-D porous packed bed is 
filled with the incompressible fluid and is initially at a 
uniform temperature. At the instant t = 0, fluid at a 
higher temperature is suddenly allowed to flow 
through the packed bed. The walls of the packed bed 
are kept at a given constant temperature during the 
process. In establishing a model for analyzing this 
problem, the following assumptions and simplications 
are employed : 

• the fluid phase is incompressible, flow is uniform 
and the mass flow rate at every cross section of 
the packed bed is constant ; 

• thermal, physical, and transport properties are 
constant; 

• heat transfer is 2-D and fluid flow is 1-D. 

In ref. [12] it is shown that for many applications 
the product hsfasf is large and the dimensionless solid 
phase temperature differs from the fluid phase tem- 
perature by a small perturbation : 

O+ = Or+cSAO (1) 

where 6 is a dimensionless small parameter. Following 
the perturbation analysis presented in ref. [12] it is 
easy to show that under these assumptions the dimen- 
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asf 
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hsf 

Li 

Ri 
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N O M E N C L A T U R E  

specific surface area common to solid 
and fluid phases [m2/m 3] 
specific heat at constant pressure 
[J kg ~K 1] 
fluid-particle heat transfer coefficient 
between solid and fluid phases 
[W m-2 K -] ] 
length of the packed bed in x-direction 
(for i = 1) and in y-direction (for 
i = 2) [m] 
dimensionless length of the packed bed 
(in {rdirection) 
time [s] 
temperature [K] 
velocity of the fluid phase [m s-  ]] 
Cartesian coordinates [m]. 

2 
® 
AO 

P 

4, 

Greek letters 
3 dimensionless small parameter 

porosity 
thermal conductivity [W m - l  K - t ]  
dimensionless temperature 
dimensionless difference between 
temperatures of the fluid and solid 
phases 
density [kg m -  3] 
dimensionless time 
dimensionless coordinates. 

Subscripts 
eft effective property 
in inlet 
f fluid 
0 initial 
s solid 
w wall. 

sionless fluid phase temperature is governed by the 
following equation 

~ O f  ~ 2 O f  "~- ~ 2 O f  0Of + _ (2) 

and the dimensionless temperature difference between 
the solid and fluid phases is governed by the following 
equation 

AO = (1 - A 2 )  ~Or OOr 
0"C + (Al - - A 2 ) ~ -  1 (3) 

In equations (1)-(3) the following dimensionless 
variables are utilized : 

temperature 

T-T~ ® -  
T~.- Tw 

where Ti, is the inlet temperature of the fluid phase 
and Tw is the temperature at the walls of the packed 
bed, 

Fluid at a constant 
temperature Tin 

Y 
~2 

0 

Walls of packed bed are kept 
at a constant temperature T w 
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Fig. 1. Schematic diagram of the porous packed bed. 
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coordinates 

Pr(Cp)rt~x and ¢2 pf(Cp)f/)f ¢ 1 
2roll + 2~off 2f.ff + 2 ~  Y 

time 

[Pf(Cp)fVf] 2 
Z = [ePf(Cp)r+ (1 --e)p~(cp)~](2f~tr+)tsefr ) 

and the dimensionless parameters 

A1 = epr(cp)f+ (1 --e)p~(cp)~ 
epf(Cp)f 

A2 = 3"r~fr[epr(CP)f + (1 - e)p~(cp)~] 
t;Pf (Cp) f[/~feff"[- '~seff] 

and 

6 =  
l ~[pf(Cp)f]3V~ 

hsfasf [gpf(Cp) f q- (1 -- e)p~ (Cp)~] (£f~ff + 2,ar) " 

ANALYSIS 

For  the dimensionless fluid temperature, Of, initial 
and boundary conditions discussed in the beginning 
of the previous section can be written in the following 
form : 

Or(el, ¢2, 0) = O0 (4) 

0Or 
Of(0, ¢2,'C ) = 1, ~ 1  (RI,~2,'~) = 0  (5) 

®f(¢,,0,~:) = 0, Of(~,,R2,z) --- 0 (6) 

where 

®o 

and can be either positive, negative or zero, 

R1 - pf(Cp)fVf L~ and R2 pf(Cp)fVf r 
2f¢ff -]- '~sefr ~-feff"~ 2seff L~2" 

The zero temperature gradient at the fluid outlet 
boundary, ~ = R~, means that it is assumed that the 
temperature of the fluid does not change after the fluid 
left the packed bed and there is no temperature jump 
at the outlet boundary. 

The solution of equation (2) with initial conditions 
of equation (4) and boundary conditions of equations 
(5)-(6) cannot be obtained simply as a product of the 
solutions of the pertinent 1-D problems. Following 
ref. [13], this problem is reduced to two simpler prob- 
lems : a problem of steady temperature and a problem 
with zero surface temperature/heat flux 

Of(e,, ¢:,'r) = U(¢l,¢2)+W(¢l,¢2,z). (7) 

The function u :~atisfies the following steady equa- 
tion 

~u a2u a2u 
+ (8) a¢, a¢, ~ a¢~ 

and the boundary conditions (5) and (6). The function 
w satisfies the transient equation (2) with boundary 
conditions (6) at the walls, the following zero boun- 
dary conditions at the fluid inlet and outlet 

0w 
w(0, ¢2, z) = 0, ~ (R1, ¢2, z) = 0 (9) 

and the following initial condition 

Of(~1,¢2,0 ) = O0--U(¢l ,  ¢2 ). (10) 

The solution for the function u is obtained using the 
classical Fourier method as 

~1 . nn + b . )  

x exp [ -b . (R~ - ¢ 0 1  ] (11) 

where 

b. = + \R2] J (12) 

and the series coefficients in equation (11) are 

211 - ( -  1)"1 
(7. = nn[-- ( l+b . )  exp(b.R,) + (½-- b.) e x p ( - b . R 0 ] "  

(13) 

The solution for the function w is also obtained using 
the classical Fourier method as 

. . . .  , ' \ g 2 ]  ] J 

x sin(am¢l) sm ¢2 (14) 

where am are different positive solutions of the tran- 
scendental equation 

tan(amRl) = - 2a,, (15) 

and the series coefficients in equation (14) are 

RE 4am a,,L 1 
[1--(--1)"] O0 n l + 4 a 2  ~ 2 nn(a,. + b.) J 

On,  m = 
R2 2 sin  ,:14am J 

(16) 

The solution for the dimensionless fluid temperature, 
®f, now follows from equations (7), (11) and (14). 

Figure 2 shows a typical space distribution of  the 
dimensionless fluid temperature. For  this particular 
calculation the temperature at the walls of the packed 
bed is chosen to be between the initial and inlet tern- 
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Fig. 2. The space distribution of the dimensionless fluid temperature, O f ,  for: ®0 = - 2 ,  R, = 12, R2 = 10, 
Aj = 13 and A2 = 2.6 for z = 4. These values of A~ and A2 correspond to the following ratios of the 

thermophysical properties : (cp)rpf = 0.25(cp)sps, 2fe~ = 0.252s~n and e = 0.25. 

peratures. According to equation (1) the difference 
between the fluid and solid dimensionless tem- 
peratures is of  the order of  the small parameter 6. 

The dimensionless temperature difference between 
the solid and fluid phases can be now found from 
equations (3), (7), (11) and (14) as 

AO = ( A 1 - A ~ )  

U oo ~ 1 • 7~F/ 

1 A ~ FI a2 /xn'~2-1 
- + 

xexp{~ -- [~ +a2m + (nn'~21"c'~\R2) _] 

x sin(am~,) sm ~2 + (A, - A 2 )  

x [ 2 +  .... L , a"D'~"'exp{~-[ l+a#+(nn~21z~\R2) _] J 

where the coefficients b,, Cn, am and Dn, m a r e  deter- 
mined by equations (12)-(13) and (15)-(16) and the 
functions u and w are given by equations (11) and 
(14) correspondingly. 

Figures 3(a)-(b) depict the space distributions of  
the dimensionless temperature difference. It can be 
seen that the temperature difference consists of  the 
steady and transient components.  The steady com- 
ponent comes from the steady solution for the func- 
tion u and describes the temperature difference at 
z = oo. Unlike the results presented in ref. [12], the 
temperature difference for this problem does not 
approach zero when time approaches infinity. This is 
because in our  case the fluid inlet temperature differs 
from the temperature at the walls of  the packed bed. 
The steady component  is localized near the inlet 
boundary. The transient component  comes from the 
transient solution for the function w and describes a 
wave propagating in the ~l-direction from the fluid 
inlet boundary. The amplitude of  the wave quickly 
decreases while the wave propagates downstream. 

CONCLUSIONS 

The process of  heating a 2-D porous packed bed 
by a non-thermal equilibrium flow of  incompressible 
fluid is investigated. Using the perturbation technique, 
the analytical solution for the problem is obtained. It 
is shown that the temperature difference between the 
fluid and solid phases consists of  the steady and tran- 
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Fig. 3. The space distributions of the dimensionless temperature difference -A®,  for O0 = - 2 ,  R~ = 12, 
R2 = 10, A = 13 and A2 = 2.6 for the following moments of the dimensionless time: (a) • = 2 (b) • = 4. 

sient components.  The steady component  describes 
the temperature difference at z = oo-- i t  is localized 
near the inlet boundary.  The transient component  
describes a wave propagating in the ~l-direction from 
the fluid inlet boundary. The amplitude of  the wave 

quickly decreases while the wave propagates down- 
stream. 
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